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ABSTRACT

Android, an open-source and Linux-based mobile operating system,
Is the most widely used mobile operating system in the world
according to recent reports. Due to its popularity and open-source
structure, Android has become a target for malicious attacks and
attackers. According to Cisco's 2014 security report, 99% of mobile
malware targets the Android operating system. Android applications
are usually obtained from the official app market, Play Store, which
publishes applications uploaded by various developers without
subjecting them to security scanning. In addition, when a user
attempts to install an application, Android presents the permissions
requested by the application during installation and leaves all
responsibility to the user afterward. Studies have shown that a large
majority of Android users are unaware of these permissions or the
effects they have. Therefore, there is a need for a security scan to
determine whether applications contain malicious content and to
inform users. Various approaches and methods are available in the
literature to meet this need. In this study, various Android malware
detection/protection systems were examined under four headings:
static, dynamic, signature-based analysis approaches, and protection
with encrypted data communication. The methods used, including
manifest analysis, API call tracking, signature databases, secure
data exchange, and machine learning features, were presented
comparatively.

Key Words: Android, malware detection, smartphone, mobile
security, mobile application security.
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Introduction

Due to its open-source nature, Android has gained a significant
market share in the smartphone market. In late 2013, Google
announced that there were over one billion Android users.
According to research conducted by Strategy Analytics in the fourth
quarter of 2013, Android increased its market share in the
smartphone market from 75% to 81.3% compared to the previous
year, with a user base of 204.4 million [1]. In July 2013, Google
announced at an event that the number of applications available on
the official Android app store, Play Store, had surpassed one million
[2].According to Cisco's 2014 security report, 99% of mobile
malicious attacks conducted in 2013 targeted Android [3].
Similarly, the Mobile Security Threat Report prepared by Sophos in
2014 revealed a six-fold increase in Android malware in the past
year [4]. Android-based malicious software aims to collect users'
personal information (gray ware) and perform unauthorized actions
(malware). The rate of malicious software on the Play Store has
shown a significant increase in recent years, according to studies
[5,6]. The main reasons for this increase can be attributed to the
open-source nature of Android and its passive protection method.
Android has a permission-based security mechanism [7,8].
Permissions are the approvals required for applications to use
various resources of the phone, such as Short Message Service
(SMS) sending and location reporting. When users
installapplications, Android lists the permissions requested by the
application. These permissions are used to inform the user about the
capabilities the application will have [9]. After this stage, the user
can continue with their own evaluation and proceed with the
installation or cancel it. Moreover, these permissions are not
presented to the user again after the installation is complete [10]. If
permissions not requested during installation are used by the
application, the application fails [11]. A study conducted by Felt et
al. revealed that only 17% of users pay attention to these
permissions, and 42% of users have no knowledge about them [10].
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Other studies have also shown that Android permission notifications
are ignored by users [8], [12-15].

There are various Android malicious software detection and
protection systems in the literature that aim to address these
shortcomings. These systems are categorized into four main
approaches: static analysis approach, dynamic analysis approach,
signature-based analysis and protection, and protection through
encrypted data communication. The article is structured as follows:
1. The second section provides information about the Android
system architecture to better understand the permission mechanism.
2. The third section discusses the mechanisms for detecting and
protecting against malicious software through the static analysis
approach, dynamic analysis approach, signature-based analysis and
protection, and protection through encrypted data communication.
3. In the fourth section, these methods are presented comparatively.
4. The fifth section presents the results and evaluations, and
proposes possible protection methods that can be further developed.
2. Android System Architecture

Android has a layered system architecture. The layers and
components of this system architecture are presented in Figure 1.
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Figure 1. Android System Architecture [16].
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Android has a customized Linux operating system (Linux Kernel)
at the bottom layer, which communicates with the phone hardware.
The middle layer consists of Java-based libraries and the application
framework. The top layer, the application layer, contains software
applications that interact with end users, developed using the
Android Application Programming Interface (API). Permissions
such as SMS sending, location reporting, and external storage
read/write, which are requested by applications, are authorized and
communicated with system resources through the application
framework. For example, in order to perform location reporting on
Android, at least one of the permissions,
eitherACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION, needs to be requested by the
applications. If the user grants this permission/permissions, the
Location Manager service, which is one of the components in the
middle layer application framework, provides access to location
information.Android applications are delivered as package files
with the .apk extension. These package files contain all the
resources related to the application, such as source code, image files,
and constant value definitions. Each Android application contains a
manifest file (AndroidManifest.xml) that includes basic information
about the application, permissions requested, activities, services,
and receivers owned by the application. Android applications are
developed using the Java programming language but run on a virtual
machine called the Dalvik Virtual Machine (DVM).Figure 2
illustrates the software stack structure of Android applications.
After Java classes are compiled, a .class file is created for each class,
and Java Virtual Machine (JVM) bytecode is generated. The Dalvik
dx compiler recompiles these codes and creates a single .dex file
that contains all the classes. This file is executed on the DVM. Each
application runs on its own DVM.Vidas and his friends [20] have
developed an extension of Eclipse, a widely used Java Integrated
Development Environment (IDE), to perform application
permission analysis on source code. However, this tool does not
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question the purpose of permission usage, thus it does not highlight
potential malicious content.
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Figure 2. Software Stack Structure of Android Applications [18]

3. Android Malware Detection and Protection Mechanisms

As the variety and number of Android malware increase, protection
methods also increase and diversify accordingly. Malware detection
and protection systems in the literature are classified under four
headings: static analysis approach, dynamic analysis approach,
signature-based analysis and protection, and encrypted data
communication.

3.1. Static analysis approach

The static analysis approach enables the detection and protection of
malicious software in applications through the data they provide
without being installed on devices. The most significant advantage
of this approach is that it allows for the detection and protection of
malicious software without installing it on the device. Thus, the
device remains unaffected by the malicious content.
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Figure 3. DroidMat Architecture [19]
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DroidMat [19] is a tool that enables the detection of Android
malware through API calls related to the manifest file and
permissions. The architectural structure of DroidMat is presented in
Figure 3. As shown in the figure, static behavioral analysis is
derived through the manifest file. After obtaining static behavioral
analyses, the application proceeds to the functional behavioral
analysis phase. Once these analyses are obtained, malicious
software models are created using the K-means algorithm. The
number of clusters to be formed is determined using the Singular
Value Decomposition (SVD) algorithm. Finally, using the kNN (k
Nearest Neighbours) algorithm with k=1, it is determined whether
the analyzed application is malicious or not.Drebin [21] is a tool that
attempts to detect Android malware by combining static analysis
and machine learning approaches. Drebin collects various features
such as permissions, API calls, and network addresses using the
application's source code and manifest file. These features are
embedded in a unified feature vector and used for Android malware
detection through various patterns.Felt et al. [22] proposed a system
called Stowaway that detects Android applications that request
excessive permissions. Stowaway identifies the set of API calls used
by an application and matches these calls with permissions.
Stowaway consists of two parts: the first part identifies the API calls
used by the application, and the second part matches permissions to
each API call to determine the required permissions. This way,
applications that request excessive permissions are identified
through this system. Additionally, the study highlights the "most
common developer mistakes" asfollows: (1) incorrect use of
permission names, (2) misuse of proxies, (3) violation of protection
levels during the use of related methods, (4) inclusion of deprecated
permissions, (5) use of signature and/or system permissions, (6)
forgetting changes made during testing, and (7) unnecessary
permission requests through copy-pasting.

3.2. Dynamic analysis approach

The most significant difference between the dynamic analysis
approach and the static analysis approach is that application analysis
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is performed at runtime. The key advantage of the dynamic analysis
approach is its ability to uncover complexities, deficiencies, or
vulnerabilities that cannot be revealed through static analysis [23].
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Figure 4. Crowdroid Android Malware Detection Mechanism [24]

Burguera et al. [24] present Crowdroid, an application framework
for detecting abnormal behavior in Android applications. Crowdroid
utilizes the Strace command, a Linux-based tool, to capture system
calls made by the Android kernel and classify Android applications
as "benign" or "malicious”. Figure 4 illustrates the Android malware
detection mechanism of Crowdroid. This mechanism involves data
collection (device information, installed application list, and
monitoring logs), data processing, malicious software analysis, and

detection stages.
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Figure 5. Preview of the AppsPlayground Intelligent Execution Module
[25]
8 Copyright © ISTJ Ak sine qolall (3 s

Al 5 lall A ) Alaal



International Science and Volume32aad) Ryl p glll A0 g

Imtrwaational beimrs mad Taviasiags demraal

ﬁg:ﬁﬁﬂﬂm‘ Part 2 Alsal) I S T -J %

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

Rastogi et al. [25] developed an automated dynamic analysis tool
called  AppsPlayground  for  smartphone  applications.
AppsPlayground employs various detection, tracing, and masking
techniques such as kernel-level tracing, API call tracing, event
triggering, and intelligent execution to provide an effective analysis
environment. Figure 5 presents a preview of the AppsPlayground
intelligent execution module.

Zhou and Jiang [26] propose a systematic approach to Android
malware detection. They use a dataset consisting of 1,260 Android
malware samples from 49 different malware families. Zhou and
Jiang characterize malicious software based on various behavior
patterns, including installation, activity, and data transmission.
RiskRanker [27] is a proactive system that analyzes whether
applications exhibit dangerous behaviors such as gaining high-level
privileges and sending SMS messages in the background. It aims to
detect potentially harmful behaviors in applications.DroidMOSS
[28] is a system designed to detect attacks on applications by
repackaging them with malicious content in application markets. It
focuses on identifying repackaged applications.Paranoid Android
[29] conducts security scans on Android applications using virtual
copies of smartphones in a virtual environment. By using servers, it
allows for the simultaneous application of multiple detection
techniques. Additionally, by performing virus scans on servers
instead of mobile devices, Paranoid Android reduces the software
cost.

CopperDroid [30] performs dynamic behavior analysis by
characterizing low-level operating system-specific and high-level
Android-specific application behaviors on an emulator called
QEMU. The application behavior analyses are observed through
system call requests. This allows CopperDroid to analyze behavior
from Java programs, Java Native Interface (JNI), or native code
executions.

3.3. Signature-based analysis and protection

In signature-based analysis and protection systems, analyzed
applications are stored in a signature database, following a
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continuous learning-based approach. This approach typically
involves the use of a central server and a signature database. The
central server handles the analysis and protection processes, while
the database server stores the obtained analyses for future use.
Guido et al. [31] developed a service called Tractor Beam to run on
smartphones and transfer information to a central server via Wi-Fi.
The service periodically sends bit changes and offset values to the
central server over Wi-Fi. Tractor Beam stores only the bit changes,
represented by Secure Hash Algorithm-256 (SHA-256) hashes,
which only show the differences in bits instead of storing entire
blocks. This approach minimizes the storage space required. The
central server stores the received bit changes and offset values in a
normalized relational database. The central server creates system
images and processes them through an analysis framework. The
analysis framework consists of detectors and loggers. Detectors
house malware detection techniques, while loggers record all
activities that may be malicious.

/—\/ ,,,,,,,,,,,,

Application Framework

Collector

i { Logger
P TR P s Classifier ~

1 —

b |
{

—

Call Monitor

Figure 6. Functional blocks of MADAM [32]

MADAM [32] is a multi-level anomaly detection tool for Android
malware. MADAM performs malware detection at both the kernel
and application levels. The system leverages system calls to monitor
user activities, file and memory accesses, incoming and outgoing
data traffic, power consumption, and sensor status at the kernel
level. At the application level, detections are based on extracted
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features such as user idle status, the number of sent/received SMS
messages, and Bluetooth/Wi-Fi analysis. Figure 6 presents the
functional blocks of MADAM, and Table 1 provides the level-
specific features of MADAM.

Level Feature
Kernel System calls
User/Applications Executed processes
CPU usage
Free RAM

Keyboard operations

Dialed numbers
Sent/received SMS messages
Bluetooth/Wi-Fi analyses

Examples of Malicious Software

Official Android app

I I
I I
I I
I I
! Signature-Based !

Ml 2 .

-~ : : Known Malware Infection
oot Application ! 4
Alternative M2 ,mm i i :
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P | i i T
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Ll i ] i

_____________

DroidRanger

Figure 7. DroidRanger Software Architecture [6]

DroidRanger [6] aims to detect new samples of known malware
families through its permission-based behavior tracing scheme.
Subsequently, a heuristic-based filtering scheme is applied to reveal
the behavioral patterns of unknown malware families. Figure 7
presents the software architecture of DroidRanger.

3.4. Protection Approach with Encrypted Data Communication
The protection approach with encrypted data communication aims
to ensure secure data transmission. By doing so, it aims to prevent

11 Copyright © ISTJ Ak gias okl (3 ia
Ayl g o shell 40 sal) Alaall



International Science and Volume32aad) Ryl p glll A0 g

Bi:ﬁ ﬁﬁf?ﬂ‘ Part 2 alaal) |_§:F:] %

July 2023 s s

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

potential security vulnerabilities that are frequently exploited by
malicious software.

Store
(Encrypted and plain data)

Service Broadcast Receiver

Applications

Service Broadcast Receiver l

/ Service \‘
System Broadcast Receiver Database
(Encrypted data)
&
'
'
'

h 4

Modified
Applications

Figure 8. Cryptographic system architecture proposed by Pocatilu [18].

In the approach proposed by Pocatilu [18], sensitive user data such
as SMS information, emails, and files are encrypted and stored in a
database. When a user receives a message from the system or
applications, an interception takes place, and the message content is
encrypted and stored in the database. When another application
needs access to the stored data, the data is retrieved from the SQL.ite
database, decrypted, and then forwarded to the relevant
applications. Figure 8 illustrates the proposed system
architecture.The javax.crypto package in the Android application
programming interface provides classes for symmetric key
encryption (AES, DES), public-key encryption (RSA, DH), and
message digest functions. Figure 9 presents an example Java class
that demonstrates the encryption and decryption of character strings
using the DES algorithm.Vidas and Christin [33] introduce a tool
called Applntegrity, which assists in cryptographic verification
between software developers and users.
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Timpozt javax.crypto.*;
import org.kobjects base6d4 Base6d:

|class SecCD
| €
public static String decripteazaDES(String sir, SecretKey cheie)
[
String sirDecriptat = null;

try
{
Cipher cifDecriptare = Cipher.getInstance ("DES/ECB/PKCS5Padding") ;
cifDecriptare.init (Cipher .DECRYPT_MODE, cheie):
sirDecriptat = new String(cifDecriptare.doFinal (Base64.decode (sir)));
}
catch (Exception ex)
{ Log.e("PDM1", ex.getMessage()); }
return sirDecriptat;

}

public static String cripteazaDES (String sir, SecretKey cheie)
{
String sirCriptat = null;

try
{
Cipher cifCriptare = Cipher.getInstance ("DES/ECB/PKCS5Padding");
cifCriptare.init(Cipher .ENCRYPT MODE, cheie) ;
sirCriptat = Base64.encode(cifCriptare.doFinal (sir.getBytes ("UTF8")))
}
catch (Exception ex)
{ Log.e("PDM1", ex.getMessage()):; }
return sirCriptat;
}
}

Figure 9. Example Java Class for Encrypting and Decrypting Character
Strings using the DES Algorithm.

This tool aims to strengthen the authentication mechanisms
provided in application markets. It is believed that this can make
application repackaging, a popular method for spreading malicious
software, more difficult.

Khalil et al. [34] have proposed a new architectural design called
"Consolidated Identity Management System" by addressing the
vulnerabilities of existing identity management systems in mobile
cloud computing. It is believed that this new architecture addresses
the identified server vulnerabilities, mobile device vulnerabilities,
and network traffic interception vulnerabilities. APK files of
applications available on the Play Store can be obtained and
modified to incorporate malicious code. Subsequently, these
applications are presented under a different name through the
market or another accessible webpage. Apart from these activities,
the main tools used for recompiling and modifying Android
applications include:- APKTool: Used for compiling and
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recompiling APK files.- smali: Acts as a translator and reverse
translator for DEX files.- dex2jar, jad: Enables the extraction of JAR
files from DEX files.- JD-GUI: An interface program that converts
compiled Java classes (class files) into readable Java source code.
4. System Comparisons

Due to the wide variety of malicious software, a single protection
and detection method is not sufficient for detecting and protecting
against all types of malware. Each approach presented in Section 3
encompasses a unique method for malware protection and detection.
The malware detection and protection features of these approaches
are comparatively presented in Table 2.

Table 2. Feature comparison of malware detection and protection

systems.
Feature Drebin | Crowdroid | MADAM | DroidMat | Julia
ManifestAnalysis YES NO YES YES YES
API call YES YES YES YES YES
Monitoring
Signature database | NO YES YES YES NO
Secure data NO NO NO NO NO
exchange
Machine learning YES YES YES YES NO

As seen in Table 2, none of the examined systems possess all five
defined features. Among these systems, only MADAM and
DroidMat have four out of the five features we considered.
However, none of the malware detection and protection systems
provide secure data exchange. On the other hand, all of these
systems have the feature of API call monitoring and detection.
Additionally, it can be observed that 4 out of 5 systems utilize
machine learning in their detection and protection mechanisms.

5. Conclusion and Evaluations

Android continues to maintain its status as the most widely used
mobile operating system worldwide. The official application market
for Android, Play Store, sees thousands of new applications being
uploaded every day. This popularity has made Android a prime
target for malicious software developers. Research indicates that
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99% of mobile-based malicious attacks are targeted toward
Android. The key factors identified in Android's vulnerability to
malicious software include: (1) Passive protection exhibited
towards applications uploaded to Play Store, (2) End users being
responsible for approving permissions requested by applications,
with a large majority of users being unaware of these permissions,
(3) Open-source nature of Android, and (4) Support for Java, a
popular programming language.In this study, various systems
involved in the detection and protection against Android malicious
software were comparatively examined from different perspectives.
The examination results revealed that these systems lack features
related to secure data exchange. However, they tend to incorporate
machine learning methods for malware detection and protection or
prefer utilizing machine learning. These systems generally operate
after an application has been installed on the system, rather than
having pre-installation detection and protection mechanisms.
Therefore, there is a need for more comprehensive malware
detection and protection systems that can identify malicious
software before Android applications are installed, thereby guiding
users and taking necessary precautions Developing such systems is
crucial for analyzing the usage purpose of permissions, which forms
the foundation of security vulnerabilities, by examining the
application source code. Through such an application, it becomes
possible to determine whether requested permissions have
malicious intent and to ensure that users or the system take
necessary measures.
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