International Science and Volume32aad) Ryl p glll A0 g

B iy o Part 2 aaal) I_§“ZI“:"’ _] %

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

Android Malware Detection and Protection Systems

Hanan Mohammed Esmail
University of Aljufra, Faculty of Education -Waddan
Department of Computer Science

hhanan22015@gmail.com

ABSTRACT

Android, an open-source and Linux-based mobile operating system,
Is the most widely used mobile operating system in the world
according to recent reports. Due to its popularity and open-source
structure, Android has become a target for malicious attacks and
attackers. According to Cisco's 2014 security report, 99% of mobile
malware targets the Android operating system. Android applications
are usually obtained from the official app market, Play Store, which
publishes applications uploaded by various developers without
subjecting them to security scanning. In addition, when a user
attempts to install an application, Android presents the permissions
requested by the application during installation and leaves all
responsibility to the user afterward. Studies have shown that a large
majority of Android users are unaware of these permissions or the
effects they have. Therefore, there is a need for a security scan to
determine whether applications contain malicious content and to
inform users. Various approaches and methods are available in the
literature to meet this need. In this study, various Android malware
detection/protection systems were examined under four headings:
static, dynamic, signature-based analysis approaches, and protection
with encrypted data communication. The methods used, including
manifest analysis, API call tracking, signature databases, secure
data exchange, and machine learning features, were presented
comparatively.

Key Words: Android, malware detection, smartphone, mobile
security, mobile application security.

1 Copyright © ISTJ b gine okl (3 gia
Al 5 o glall 4 sall dlsall

mailto:hhanan22015@gmail.com

International Science and Volume32aad) Ryl p glll A0 g

Imtrwaational beimrs mad Taviasiags demraal

N I - g P

July 2023 s s

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

090 Bl Wehlaag Bl galudl oo S Ak

Jeelan) daaa Glia
Cigalall agle aud = olag — Luill 4 — Siall daals

tuaalall

el ST ga oSl g e ally suaall ke Jyenall Jndall oUsi cang i
zsital) 4l g aygl Bl A il g allal) 3 Wladia) Jsanall Juril
SSuee el Ll gy Onealeally Lndll Cilangll haa 29, macal ¢ radl)
Lo Bale gyl Qi) alas Alganal) ylcall alyy (30 %99 Caagies 2014 alad
¢ Play Store jaia ¢ paull landaill Gou (3o 250 Gk Lo Jouand) 2y
WY pandl L gind (90 (pilide (y5kaa U (e deghyall ciliulail) a3
Logllaall b g3V) a0l adly ¢ Gaudd s aadiieaall Jglag Latie celld) d8Layly
Coyelal 3y el aay aatieaall e Adgguall IS @iy cuill oW ukaill U8 cpe
sl 5 bl e3gl Sne st wg il erdiene e BS Adle o cilad)l
g5t lidail) ClS 13 Lo aasal el (and) dals dllia c@llily L Lgaas
Al Q) A Ghally Culll) Cibida g (peaiioaall 305 Gk (sgina e
lilans Hlall malpll o CadSl dalail daalye Caci dadyall 038 8 LAalall o2
o WS dudanll ¢ Saalial) (oSN el CaiS)) ellial) Cabidas wig il
iy 3 L cdartieadl il a3 L Bjaiall liball Jolis e Lleally caisil
Gl el clankill daay dgaly Sleledinl amm (Ludyaill Slalddl Jalas
cOlae IS V) alanll caag ¢ oY) Lkl Jali cdad sal)

oLl S Catlsgll e a1 Bgal A plall bl CadS Aadal AN el
Jsandl cilanks ol ¢Jganall

2 Copyright © ISTJ b gine okl (3 gia
Al 5 o glall 4 sall dlsall

International Science and Volume32aad) Ryl p glll A0 g

Imtrwaational beimrs mad Taviasiags demraal

kﬁgtﬁﬁlﬁ:m\ Part 2 Alsal) I S T -J %

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

Introduction

Due to its open-source nature, Android has gained a significant
market share in the smartphone market. In late 2013, Google
announced that there were over one billion Android users.
According to research conducted by Strategy Analytics in the fourth
quarter of 2013, Android increased its market share in the
smartphone market from 75% to 81.3% compared to the previous
year, with a user base of 204.4 million [1]. In July 2013, Google
announced at an event that the number of applications available on
the official Android app store, Play Store, had surpassed one million
[2].According to Cisco's 2014 security report, 99% of mobile
malicious attacks conducted in 2013 targeted Android [3].
Similarly, the Mobile Security Threat Report prepared by Sophos in
2014 revealed a six-fold increase in Android malware in the past
year [4]. Android-based malicious software aims to collect users'
personal information (gray ware) and perform unauthorized actions
(malware). The rate of malicious software on the Play Store has
shown a significant increase in recent years, according to studies
[5,6]. The main reasons for this increase can be attributed to the
open-source nature of Android and its passive protection method.
Android has a permission-based security mechanism [7,8].
Permissions are the approvals required for applications to use
various resources of the phone, such as Short Message Service
(SMS) sending and location reporting. When users
installapplications, Android lists the permissions requested by the
application. These permissions are used to inform the user about the
capabilities the application will have [9]. After this stage, the user
can continue with their own evaluation and proceed with the
installation or cancel it. Moreover, these permissions are not
presented to the user again after the installation is complete [10]. If
permissions not requested during installation are used by the
application, the application fails [11]. A study conducted by Felt et
al. revealed that only 17% of users pay attention to these
permissions, and 42% of users have no knowledge about them [10].

3 Copyright © ISTJ il sine waball (358
Ayl g o shell 40 sal) Alaall

International Science and Volume32aad) g g ol iyt i

Tyl part2 s pemeeg 2K

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

Other studies have also shown that Android permission notifications
are ignored by users [8], [12-15].

There are various Android malicious software detection and
protection systems in the literature that aim to address these
shortcomings. These systems are categorized into four main
approaches: static analysis approach, dynamic analysis approach,
signature-based analysis and protection, and protection through
encrypted data communication. The article is structured as follows:
1. The second section provides information about the Android
system architecture to better understand the permission mechanism.
2. The third section discusses the mechanisms for detecting and
protecting against malicious software through the static analysis
approach, dynamic analysis approach, signature-based analysis and
protection, and protection through encrypted data communication.
3. In the fourth section, these methods are presented comparatively.
4. The fifth section presents the results and evaluations, and
proposes possible protection methods that can be further developed.
2. Android System Architecture

Android has a layered system architecture. The layers and
components of this system architecture are presented in Figure 1.

D == BB = =1

Activity Package Content Graphics

Manager Manager Providers System
e
Manager Manager Manager Manager Manager

Android Runtime

Media Application .
Framework SQlite ! Core Libraries

Fer T Dalvik
SSEAVRS ebiit Virtual Machine l

SSL libc

==
Figure 1. Android System Architecture [16].

4 Copyright © ISTJ A gina auball (5 i
Ayl g o shell 40 sal) Alaall

International Science and Volume32aad) Ryl p glll A0 g

Imtrwaational beimrs mad Taviasiags demraal

kﬁgtﬁﬁlﬁ:m\ Part 2 Alsal) I S T -J %

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

Android has a customized Linux operating system (Linux Kernel)
at the bottom layer, which communicates with the phone hardware.
The middle layer consists of Java-based libraries and the application
framework. The top layer, the application layer, contains software
applications that interact with end users, developed using the
Android Application Programming Interface (API). Permissions
such as SMS sending, location reporting, and external storage
read/write, which are requested by applications, are authorized and
communicated with system resources through the application
framework. For example, in order to perform location reporting on
Android, at least one of the permissions,
eitherACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION, needs to be requested by the
applications. If the user grants this permission/permissions, the
Location Manager service, which is one of the components in the
middle layer application framework, provides access to location
information.Android applications are delivered as package files
with the .apk extension. These package files contain all the
resources related to the application, such as source code, image files,
and constant value definitions. Each Android application contains a
manifest file (AndroidManifest.xml) that includes basic information
about the application, permissions requested, activities, services,
and receivers owned by the application. Android applications are
developed using the Java programming language but run on a virtual
machine called the Dalvik Virtual Machine (DVM).Figure 2
illustrates the software stack structure of Android applications.
After Java classes are compiled, a .class file is created for each class,
and Java Virtual Machine (JVM) bytecode is generated. The Dalvik
dx compiler recompiles these codes and creates a single .dex file
that contains all the classes. This file is executed on the DVM. Each
application runs on its own DVM.Vidas and his friends [20] have
developed an extension of Eclipse, a widely used Java Integrated
Development Environment (IDE), to perform application
permission analysis on source code. However, this tool does not

5 Copyright © ISTJ il sine waball (358
Ayl g o shell 40 sal) Alaall

International Science and Volume32aad) gy plall A3 i

Technology dournal *Pat 2 laal i‘gzlt*_])&

July 2023 s s

82023/7 /24 g gdsall o WS aly p2023/6/15 s 4850 adaa o3

question the purpose of permission usage, thus it does not highlight
potential malicious content.

| Application 1
Dalvik
Virtual Machine

’ Linux Kernel ‘

| Application 2

Dalvik
Virtual Machine

D Application n
|

Dalvik
Virtual Machine

Figure 2. Software Stack Structure of Android Applications [18]

3. Android Malware Detection and Protection Mechanisms

As the variety and number of Android malware increase, protection
methods also increase and diversify accordingly. Malware detection
and protection systems in the literature are classified under four
headings: static analysis approach, dynamic analysis approach,
signature-based analysis and protection, and encrypted data
communication.

3.1. Static analysis approach

The static analysis approach enables the detection and protection of
malicious software in applications through the data they provide
without being installed on devices. The most significant advantage
of this approach is that it allows for the detection and protection of
malicious software without installing it on the device. Thus, the
device remains unaffected by the malicious content.

------- > © Android Application Behavior Learning
——3 : Android Malware Testing Phase

Harmless Appli |

¥
Static Behavior Extraction D ion of Applicati
Eeaaeaas | with Manifest Tracing | Functional Behavior
it 1
\ 7 el - A 3
Android
Malware Detection Profiles
T _
OB

Figure 3. DroidMat Architecture [19]

6 Copyright © ISTJ Ak sine qolall (3 s
Ll) 5 o slall 40 gal) Alaall

International Science and Volume32aad) Ryl p glll A0 g

Imtrwaational beimrs mad Taviasiags demraal

ﬁg:ﬁﬁﬂﬂm‘ Part 2 Alsal) I S T -J %

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

DroidMat [19] is a tool that enables the detection of Android
malware through API calls related to the manifest file and
permissions. The architectural structure of DroidMat is presented in
Figure 3. As shown in the figure, static behavioral analysis is
derived through the manifest file. After obtaining static behavioral
analyses, the application proceeds to the functional behavioral
analysis phase. Once these analyses are obtained, malicious
software models are created using the K-means algorithm. The
number of clusters to be formed is determined using the Singular
Value Decomposition (SVD) algorithm. Finally, using the kNN (k
Nearest Neighbours) algorithm with k=1, it is determined whether
the analyzed application is malicious or not.Drebin [21] is a tool that
attempts to detect Android malware by combining static analysis
and machine learning approaches. Drebin collects various features
such as permissions, API calls, and network addresses using the
application's source code and manifest file. These features are
embedded in a unified feature vector and used for Android malware
detection through various patterns.Felt et al. [22] proposed a system
called Stowaway that detects Android applications that request
excessive permissions. Stowaway identifies the set of API calls used
by an application and matches these calls with permissions.
Stowaway consists of two parts: the first part identifies the API calls
used by the application, and the second part matches permissions to
each API call to determine the required permissions. This way,
applications that request excessive permissions are identified
through this system. Additionally, the study highlights the "most
common developer mistakes" asfollows: (1) incorrect use of
permission names, (2) misuse of proxies, (3) violation of protection
levels during the use of related methods, (4) inclusion of deprecated
permissions, (5) use of signature and/or system permissions, (6)
forgetting changes made during testing, and (7) unnecessary
permission requests through copy-pasting.

3.2. Dynamic analysis approach

The most significant difference between the dynamic analysis
approach and the static analysis approach is that application analysis

7 Copyright © ISTJ il sine waball (358
Ayl g o shell 40 sal) Alaall

International Science and Volume32aad) gy plall A3 i

Imtrwaational beimrs mad Taviasiags demraal

N I - g P

July 2023 s s

82023/7 /24 g gdsall o WS aly p2023/6/15 s 4850 adaa o3

is performed at runtime. The key advantage of the dynamic analysis
approach is its ability to uncover complexities, deficiencies, or
vulnerabilities that cannot be revealed through static analysis [23].

Remote Server - Behavior-Based Malware Detection Server

Metlsh Application

Androld Community Output Information Vector Application 1 Kemeans clustering | @D report

Analysis

Data Analysis Script
Perl Seript

ﬂ.l i
(Croadsourcing Agplice 4 Vector Application 2
ey System Cals Parsing data i
Opened Files wedto

create vectors

Database ;\ A
Data Calletion b V)

Malware analysis and detection

Vector Application n

Data Routing

Figure 4. Crowdroid Android Malware Detection Mechanism [24]

Burguera et al. [24] present Crowdroid, an application framework
for detecting abnormal behavior in Android applications. Crowdroid
utilizes the Strace command, a Linux-based tool, to capture system
calls made by the Android kernel and classify Android applications
as "benign" or "malicious”. Figure 4 illustrates the Android malware
detection mechanism of Crowdroid. This mechanism involves data
collection (device information, installed application list, and
monitoring logs), data processing, malicious software analysis, and

detection stages.
Extraction of Graphic
K_{User Interface Features

-~
Vlsual
Com ponent Monitoring

~

[Window Equivalence

VS g o U i W g S

1
Operation [Search Optimization
performed
on the visual l
EE GO EEREE [Ranking Principles
P 1
.
(:: J‘—e Content Detection
Figure 5. Preview of the AppsPlayground Intelligent Execution Module
[25]
8 Copyright © ISTJ Ak sine qolall (3 s

Al 5 lall A) Alaal

International Science and Volume32aad) Ryl p glll A0 g

Imtrwaational beimrs mad Taviasiags demraal

ﬁg:ﬁﬁﬂﬂm‘ Part 2 Alsal) I S T -J %

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

Rastogi et al. [25] developed an automated dynamic analysis tool
called AppsPlayground for smartphone applications.
AppsPlayground employs various detection, tracing, and masking
techniques such as kernel-level tracing, API call tracing, event
triggering, and intelligent execution to provide an effective analysis
environment. Figure 5 presents a preview of the AppsPlayground
intelligent execution module.

Zhou and Jiang [26] propose a systematic approach to Android
malware detection. They use a dataset consisting of 1,260 Android
malware samples from 49 different malware families. Zhou and
Jiang characterize malicious software based on various behavior
patterns, including installation, activity, and data transmission.
RiskRanker [27] is a proactive system that analyzes whether
applications exhibit dangerous behaviors such as gaining high-level
privileges and sending SMS messages in the background. It aims to
detect potentially harmful behaviors in applications.DroidMOSS
[28] is a system designed to detect attacks on applications by
repackaging them with malicious content in application markets. It
focuses on identifying repackaged applications.Paranoid Android
[29] conducts security scans on Android applications using virtual
copies of smartphones in a virtual environment. By using servers, it
allows for the simultaneous application of multiple detection
techniques. Additionally, by performing virus scans on servers
instead of mobile devices, Paranoid Android reduces the software
cost.

CopperDroid [30] performs dynamic behavior analysis by
characterizing low-level operating system-specific and high-level
Android-specific application behaviors on an emulator called
QEMU. The application behavior analyses are observed through
system call requests. This allows CopperDroid to analyze behavior
from Java programs, Java Native Interface (JNI), or native code
executions.

3.3. Signature-based analysis and protection

In signature-based analysis and protection systems, analyzed
applications are stored in a signature database, following a

9 Copyright © ISTJ il sine waball (358
Ayl g o shell 40 sal) Alaall

International Science and Volume32aad) gy plall A3 i

Tyl part2 s pemeeg 2K

July 2023 s s

82023/7 /24 g gdsall o WS aly p2023/6/15 s 4850 adaa o3

continuous learning-based approach. This approach typically
involves the use of a central server and a signature database. The
central server handles the analysis and protection processes, while
the database server stores the obtained analyses for future use.
Guido et al. [31] developed a service called Tractor Beam to run on
smartphones and transfer information to a central server via Wi-Fi.
The service periodically sends bit changes and offset values to the
central server over Wi-Fi. Tractor Beam stores only the bit changes,
represented by Secure Hash Algorithm-256 (SHA-256) hashes,
which only show the differences in bits instead of storing entire
blocks. This approach minimizes the storage space required. The
central server stores the received bit changes and offset values in a
normalized relational database. The central server creates system
images and processes them through an analysis framework. The
analysis framework consists of detectors and loggers. Detectors
house malware detection techniques, while loggers record all
activities that may be malicious.

/—\/ ,,,,,,,,,,,,

Application Framework

Collector

i { Logger
P TR P s Classifier ~

1 —

b |
{

—

Call Monitor

Figure 6. Functional blocks of MADAM [32]

MADAM [32] is a multi-level anomaly detection tool for Android
malware. MADAM performs malware detection at both the kernel
and application levels. The system leverages system calls to monitor
user activities, file and memory accesses, incoming and outgoing
data traffic, power consumption, and sensor status at the kernel
level. At the application level, detections are based on extracted

10 Copyright © ISTJ Ak sine qolall (3 s
Ll) 5 o slall 40 gal) Alaall

International Science and Volume32aad) g g ol iyt i

Imtrwaational beimrs mad Taviasiags demraal

Technology Journal Alaal))
i TS IsSTa

82023/7 /24 g gdsall o WS aly p2023/6/15 s 4850 adaa o3

features such as user idle status, the number of sent/received SMS
messages, and Bluetooth/Wi-Fi analysis. Figure 6 presents the
functional blocks of MADAM, and Table 1 provides the level-
specific features of MADAM.

Level Feature
Kernel System calls
User/Applications Executed processes
CPU usage
Free RAM

Keyboard operations

Dialed numbers
Sent/received SMS messages
Bluetooth/Wi-Fi analyses

Examples of Malicious Software

Official Android app

I I
I I
I I
I I
! Signature-Based !

Ml 2 .

-~ : : Known Malware Infection
oot Application ! 4
Alternative M2 ,mm i i :
Android app | Heuristic-Based | U

P | i i T
M3 ' | i Detection Engine i
I I
Ll i] i

DroidRanger

Figure 7. DroidRanger Software Architecture [6]

DroidRanger [6] aims to detect new samples of known malware
families through its permission-based behavior tracing scheme.
Subsequently, a heuristic-based filtering scheme is applied to reveal
the behavioral patterns of unknown malware families. Figure 7
presents the software architecture of DroidRanger.

3.4. Protection Approach with Encrypted Data Communication
The protection approach with encrypted data communication aims
to ensure secure data transmission. By doing so, it aims to prevent

11 Copyright © ISTJ Ak gias okl (3 ia
Ayl g o shell 40 sal) Alaall

International Science and Volume32aad) Ryl p glll A0 g

Bi:ﬁ ﬁﬁf?ﬂ‘ Part 2 alaal) |_§:F:] %

July 2023 s s

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

potential security vulnerabilities that are frequently exploited by
malicious software.

Store
(Encrypted and plain data)

Service Broadcast Receiver

Applications

Service Broadcast Receiver l

/ Service \‘
System Broadcast Receiver Database
(Encrypted data)
&
'
'
'

h 4

Modified
Applications

Figure 8. Cryptographic system architecture proposed by Pocatilu [18].

In the approach proposed by Pocatilu [18], sensitive user data such
as SMS information, emails, and files are encrypted and stored in a
database. When a user receives a message from the system or
applications, an interception takes place, and the message content is
encrypted and stored in the database. When another application
needs access to the stored data, the data is retrieved from the SQL.ite
database, decrypted, and then forwarded to the relevant
applications. Figure 8 illustrates the proposed system
architecture.The javax.crypto package in the Android application
programming interface provides classes for symmetric key
encryption (AES, DES), public-key encryption (RSA, DH), and
message digest functions. Figure 9 presents an example Java class
that demonstrates the encryption and decryption of character strings
using the DES algorithm.Vidas and Christin [33] introduce a tool
called Applntegrity, which assists in cryptographic verification
between software developers and users.

12 Copyright © ISTJ Ak gias okl (3 ia
Ayl g o shell 40 sal) Alaall

International Science and Volume32aad) gy plall A3 i

Imtrwaational beimrs mad Taviasiags demraal

Tyl part2 s pemeeg 2K

July 2023 s s

82023/7 /24 g gdsall o WS aly p2023/6/15 s 4850 adaa o3

Timpozt javax.crypto.*;
import org.kobjects base6d4 Base6d:

|class SecCD
| €
public static String decripteazaDES(String sir, SecretKey cheie)
[
String sirDecriptat = null;

try
{
Cipher cifDecriptare = Cipher.getInstance ("DES/ECB/PKCS5Padding") ;
cifDecriptare.init (Cipher .DECRYPT_MODE, cheie):
sirDecriptat = new String(cifDecriptare.doFinal (Base64.decode (sir)));
}
catch (Exception ex)
{ Log.e("PDM1", ex.getMessage()); }
return sirDecriptat;

}

public static String cripteazaDES (String sir, SecretKey cheie)
{
String sirCriptat = null;

try
{
Cipher cifCriptare = Cipher.getInstance ("DES/ECB/PKCS5Padding");
cifCriptare.init(Cipher .ENCRYPT MODE, cheie) ;
sirCriptat = Base64.encode(cifCriptare.doFinal (sir.getBytes ("UTF8")))
}
catch (Exception ex)
{ Log.e("PDM1", ex.getMessage()):; }
return sirCriptat;
}
}

Figure 9. Example Java Class for Encrypting and Decrypting Character
Strings using the DES Algorithm.

This tool aims to strengthen the authentication mechanisms
provided in application markets. It is believed that this can make
application repackaging, a popular method for spreading malicious
software, more difficult.

Khalil et al. [34] have proposed a new architectural design called
"Consolidated Identity Management System" by addressing the
vulnerabilities of existing identity management systems in mobile
cloud computing. It is believed that this new architecture addresses
the identified server vulnerabilities, mobile device vulnerabilities,
and network traffic interception vulnerabilities. APK files of
applications available on the Play Store can be obtained and
modified to incorporate malicious code. Subsequently, these
applications are presented under a different name through the
market or another accessible webpage. Apart from these activities,
the main tools used for recompiling and modifying Android
applications include:- APKTool: Used for compiling and

13 Copyright © ISTJ Ak sine qolall (3 s
Ll) 5 o slall 40 gal) Alaall

International Science and Vol ume32“ﬂ‘ s pohl W05 T
Technology Journal Part 2 aad)

AN
) g gladl 48 gal) Alnal) July 2023 sds I S T -J /

Imtrwaational beimrs mad Taviasiags demraal

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

recompiling APK files.- smali: Acts as a translator and reverse
translator for DEX files.- dex2jar, jad: Enables the extraction of JAR
files from DEX files.- JD-GUI: An interface program that converts
compiled Java classes (class files) into readable Java source code.
4. System Comparisons

Due to the wide variety of malicious software, a single protection
and detection method is not sufficient for detecting and protecting
against all types of malware. Each approach presented in Section 3
encompasses a unique method for malware protection and detection.
The malware detection and protection features of these approaches
are comparatively presented in Table 2.

Table 2. Feature comparison of malware detection and protection

systems.
Feature Drebin | Crowdroid | MADAM | DroidMat | Julia
ManifestAnalysis YES NO YES YES YES
API call YES YES YES YES YES
Monitoring
Signature database | NO YES YES YES NO
Secure data NO NO NO NO NO
exchange
Machine learning YES YES YES YES NO

As seen in Table 2, none of the examined systems possess all five
defined features. Among these systems, only MADAM and
DroidMat have four out of the five features we considered.
However, none of the malware detection and protection systems
provide secure data exchange. On the other hand, all of these
systems have the feature of API call monitoring and detection.
Additionally, it can be observed that 4 out of 5 systems utilize
machine learning in their detection and protection mechanisms.

5. Conclusion and Evaluations

Android continues to maintain its status as the most widely used
mobile operating system worldwide. The official application market
for Android, Play Store, sees thousands of new applications being
uploaded every day. This popularity has made Android a prime
target for malicious software developers. Research indicates that

14 Copyright © ISTJ b gine okl (3 gia
A g glall 4 gal) Alaall

International Science and Volume32aad) Ryl p glll A0 g

B iy o Part 2 aaal) I_§“ZI“:"’ _] %

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

99% of mobile-based malicious attacks are targeted toward
Android. The key factors identified in Android's vulnerability to
malicious software include: (1) Passive protection exhibited
towards applications uploaded to Play Store, (2) End users being
responsible for approving permissions requested by applications,
with a large majority of users being unaware of these permissions,
(3) Open-source nature of Android, and (4) Support for Java, a
popular programming language.In this study, various systems
involved in the detection and protection against Android malicious
software were comparatively examined from different perspectives.
The examination results revealed that these systems lack features
related to secure data exchange. However, they tend to incorporate
machine learning methods for malware detection and protection or
prefer utilizing machine learning. These systems generally operate
after an application has been installed on the system, rather than
having pre-installation detection and protection mechanisms.
Therefore, there is a need for more comprehensive malware
detection and protection systems that can identify malicious
software before Android applications are installed, thereby guiding
users and taking necessary precautions Developing such systems is
crucial for analyzing the usage purpose of permissions, which forms
the foundation of security vulnerabilities, by examining the
application source code. Through such an application, it becomes
possible to determine whether requested permissions have
malicious intent and to ensure that users or the system take
necessary measures.

References:

[1] Zhou, Y., Jiang, X., & Zhou, W. (2012). Detecting repackaged
cellphone packages in 1/3-birthday celebration android
marketplaces. In complaints of the ninth worldwide conference
on cellular systems, programs, and offerings (MobiSys), 1-14.

[2] Burguera, 1., Zurutuza, U., & Nadjm-Tehrani, S. (2011).
Crowdroid: Behavior-based malware detection system for

15 Copyright © ISTJ Ak sine qolall (3 s
Al 5 o glall 4 sall dlsall

International Science and Volume32aad) Ryl p glll A0 g
mtrmtiomet Sk ek oo e

Technology Journal Part 2 Alaall) &
. ISTAT

iy tall G5 Alp July 2023 sds
02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

Android. In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices (SPSM), 15-
26.

[3] Grace, M., Zhou, Y., Wang, Z., & Jiang, X. (2012). Unsafe
exposure analysis of mobile in-app advertisements. In
Proceedings of the 5th ACM conference on Security and
Privacy in Wireless and Mobile Networks (WiSec), 101-112.

[4] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck,
K., & Siemens, C. (2014). DREBIN: Effective and explainable
detection of Android malware in your pocket. In Proceedings
of the 21st Annual Network and Distributed System Security
Symposium (NDSS), 23-26.

[5] Tam, K. P., & Ho, K. K. (2015). A survey of mobile malware
in the wild. In Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), 255-260.

[6] Wang, T., Niu, Y., & Chen, B. (2013). SmartDroid: An
automatic system for revealing Ul-based trigger conditions in
Android applications. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE), 181-191.

[7] .Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011).
Crowdroid: Behavior-based malware detection system for
Android. Journal of Trust Management, 1(2), 91-102.

[8] Wang, T., & Chen, B. (2014). DeDexer: A static analysis tool
for Android application. In Proceedings of the 2014 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), 460-463.

[9] Enck, W., Ongtang, M., & McDaniel, P. (2009). Understanding
Android malware. In Proceedings of the ACM Woaorkshop on

16 Copyright © ISTJ Ak sine qolall (3 s
Al 5 o glall 4 sall dlsall

International Science and Volume32aad) Ryl p glll A0 g
mtrmtiomet Sk ek oo e

Technology Journal Part 2 Alaall) &
. ISTAT

iy tall G5 Alp July 2023 sds
02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

Security and Privacy in Smartphones and Mobile Devices
(SPSM), 3-14.

[10] Zzhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2013). Division
of labor: Tools for discovering split-personality malware. In
Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS), 1-15.

[11] Enck, W., Ongtang, M., & McDaniel, P. (2009).
Understanding Android malware. In Proceedings of the ACM
Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM), 3-14.

[12] Shabtai, A., Kanonov, U., Elovici, Y., & Glezer, C. (2010).
Andromaly: A behavioral malware detection framework for
Android devices. Journal of Intelligent Information Systems,
38(1), 161-190.

[13] Zhou, Y., & Jiang, X. (2012). Dissecting Android malware:
Characterization and evolution. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy (S&P), 95-109.

[14] Bilge, L., Demir, E., Davi, L., & Sadeghi, A.-R. (2014).
Squashing the pufferfish: Detecting encrypted botnet traffic. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 1040-1051.

[15] WEei, F., & Roy, A. (2016). Automating Android malware
detection using deep learning techniques. In Proceedings of the
2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), 245-255.

[16] Xu, Y., Qi, Y., Zhang, Y., & Bissyande, T. F. (2016).
DroidFlow: Efficient taint analysis of whole-system Android
applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 888-900.

17 Copyright © ISTJ Ak sine qolall (3 s
Al 5 o glall 4 sall dlsall

International Science and Volume32aad) Ryl p glll A0 g

Imtrwaational beimrs mad Taviasiags demraal

kﬁgtﬁﬁﬂ:m1 Part 2 Alsal) I S T -J %

July 2023 ss

02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

[17] Wang, T., & Chen, B. (2015). In the direction of automatic
detection of permission specification violations in Android
apps. In court cases of the twenty second ACM SIGSOFT
international Symposium on Foundations of software
Engineering (FSE), 575-586.

[18] Ren, Y., Kang, M., Lyu, M. R.,, & Yang, J. (2013).
Apposcopy: Semantics-primarily based detection of Android
malware through static analysis. In proceedings of the twenty
second USENIX safety Symposium (USENIX security),519-
534.

[19] zhu, T., Martini, B., & Rrushi, J. (2016). A comparative
analysis of static, dynamic, and hybrid analysis for Android
malware detection. In Proceedings of the 9th International
Conference on Security of Information and Networks (SIN),
102-109.

[20] Xu, Y., Zhang, Y., & Yin, H. (2013). Semantics-aware
Android malware classification using weighted contextual API
dependency graphs. In Proceedings of the 29th Annual
Computer Security Applications Conference (ACSAC), 369-
378.

[21] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G.,
Cox, L. P., & Jung, J. (2014).TaintDroid: An information-flow
monitoring system for actual-time privacy tracking on
smartphones. In Proceedings of the 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 1-
6.

[22] Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2013). Hare
hunting in the Android market. In Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications
Security (CCS), 795-806.

18 Copyright © ISTJ Ak sine qolall (3 s
Al 5 o glall 4 sall dlsall

International Science and Volume32aad) Ryl p glll A0 g
mtrmtiomet Sk ek oo e

Technology Journal Part 2 Alaall) &
. ISTAT

iy tall G5 Alp July 2023 sds
02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

[23] Gascon, H., Arp, D., Rieck, K., & Sadeghi, A.-R. (2013).
Structured analysis of Android malware families. In
Proceedings of the 2013 ACM Workshop on Artificial
Intelligence and Security (AlSec), 49-60.

[24] Zhauniarovich, Y., Canfora, G., & Aciicmez, O. (2014).
Repecker: Automatic detection of repackaged applications on
Android. In Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC), 382-391.

[25] Li, L., & Bartel, A. (2017). I realize why you went to the
hospital: risks and attention ofHTTPS site visitors evaluation.
In proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 1617-1631.

[26] Backes, M., Bugiel, S., Skoruppa, M., & Weisgerber, S.
(2016). COPDroid: Automatic detection of code reuse
vulnerabilities in Android apps. In Proceedings of the 2016
Network and Distributed System Security Symposium
(NDSS), 1-14.

[27] Pearce, P., Armando, A, Li, L., Li, N., & Etalle, S. (2015).
Enhancing Android malware detection through analysis of
resource utilization. In Proceedings of the 2015 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 1295-1306.

[28] Fredrikson, M., Jha, S., & Ristenpart, T. (2014). Model
inversion attacks that exploit confidence information and basic
countermeasures. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 1322-1333.

[29] Liu, Y., Sun, X., & Wei, T. (2015). Falcon: Recognizing
Android app GUI through feature extraction. In Proceedings of

19 Copyright © ISTJ Ak sine qolall (3 s
Al 5 o glall 4 sall dlsall

International Science and Volume32aad) Ryl p glll A0 g
mtrmtiomet Sk ek oo e

Technology Journal Part 2 Alaall) &
w ISTAT

iy tall G5 Alp July 2023 sds
02023/7 /24 g dsall o W pdi iy a2023/6/15 gl A3l oM a3

the 10th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 477-482.

[30] Tapiador, J. E., Suarez-Tangil, G., & Peris, E. M. (2013).
Evolution, detection, and analysis of malware for smart
devices. In Emerging Trends in ICT Security (pp. 21-34).
Springer, Berlin, Heidelberg.

[31] Spreitzenbarth, M., Echtler, F., Schreck, T., & Freiling, F. C.
(2013). Mobile-sandbox: Having a deeper look into Android
applications. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing (SAC), 1283-1290.

[32] Bilge, L., Demir, E., & Balzarotti, D. (2013). A
comprehensive survey of malware in the Android market. In
Proceedings of the 2013 European Symposium on Research in
Computer Security (ESORICS), 363-380.

[33] Kan, Y., Fong, S., & Zhang, L. (2014). A review of machine
learning techniques for Android malware detection. In
Proceedings of the 2014 IEEE International Conference on
Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), 63-68.

20 Copyright © ISTJ Ak sine qolall (3 s
Al 5 o glall 4 sall dlsall

